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Abstract. We analyze the energy-momentum properties of relativistic short-lived particles with the result
that they are characterized by two 4-vectors: in addition to the familiar energy-momentum vector (timelike)
there is an energy-momentum ‘spread vector’ (spacelike). The wave functions in space and time for unstable
particles are constructed. For the relativistic properties of unstable states we refer to Wigner’s method
of Poincaré group representations that are induced by representations of the space-time translation and
rotation groups. If stable particles, unstable particles and resonances are treated as elementary objects that
are not fundamentally different one has to take into account that they will not generally be orthogonal to
each other in their state space. The scalar product between a stable and an unstable state with otherwise
identical properties is calculated in a particular Lorentz frame. The spin of an unstable particle is not
infinitely sharp but has a ‘spin spread’ giving rise to ‘spin neighbors’. This opens the possibility of a non-
zero scalar product between states with unequal spin. – A first practical application of non-orthogonal
states is seen in diffraction dissociation reactions whose large cross-sections are attributed to interference
of states that are ‘partially identical’.

1 Introduction

From an experimental point of view, stable and unstable
particles are often treated alike; for example, in multi-
particle reactions one measures the cross section for the
production of a ρ-meson or an N∗-resonance or a pion or a
proton without regard to their lifetimes. There is no fun-
damental difference between stable and unstable states –
this is our perspective in the following article1. From an
algebraic point of view, particle states are eigenvectors
of a time translation operator (Hamiltonian). Hermitian
Hamiltonians acting on a Hilbert space have real energy
eigenvalues, and the eigenstates are orthogonal to each
other. If the particle is unstable and therefore the eigen-
value E − iΓ/2 is complex (Γ > 0), the Hamiltonian can
no longer be Hermitian, and the eigenvectors do not have
to be orthogonal to each other or to eigenvectors with real
energy eigenvalues.

Such non-orthogonality would have striking con-
sequences for the behavior of unstable particles (resonan-
ces) in collisions insofar as their identity is involved. Two
non-orthogonal states |1〉 and |2〉 with 〈1|2〉 �= 0 are ‘not
entirely distinguishable’ but have a ‘partial identity’ pro-
portional to their scalar product 〈1|2〉.

a e-mail: walter.blum@cern.ch
b e-mail: hns@mppmu.mpg.de
1 Although we think of particles and resonances as entities

to be measured and of states as representing them mathemat-
ically, we use these concepts without clearly distinguishing be-
tween them

A first category of interactions where we expect mea-
surable effects, is quasidiffractive scattering. These pro-
cesses are similar to elastic scattering like

π− + p −→ π− + p

p+ p −→ p+ p, (1.1)

but one of the incoming particles is excited to a short-lived
state with the same charge-like quantum numbers; it sub-
sequently decays into several decay products. Examples
are

π− + p −→ A1 + p (A1 −→ ρπ −→ πππ)
p+ p −→ N∗

1400 + p (N∗
1400 −→ pπ or pππ). (1.2)

Such reactions have been measured and investigated in
detail since the 1970’s [1]. They have exceedingly high
cross-sections which vary only slowly with the energy of
the collision. This behavior is shared between the reactions
of groups (1.1) and (1.2).

In order to understand their similarity we note that
elastic scattering proper (1.1) is governed by the phe-
nomenon of quantum mechanical interference of the in-
coming with the outgoing state, on account of their iden-
tity. We will argue that such interference is also taking
place in reactions (1.2), albeit on a reduced scale; this
we call the partial identity of the (incoming) particle and
the (outgoing) excited state. We propose that such partial
identity is intimately connected with the short lifetime of
the excited state, provided its charge-like quantum num-
bers are the same.
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Fig. 1. Creation of a free unstable particle or resonance c in
coproduction with other particles

If this is to succeed we will eventually have to include
the spin of the unstable particle because quasidiffractive
scattering is also observed when the excitation is to a dif-
ferent spin. In fact we will argue that relativistic states
with different spins also have a non-zero scalar product
between each other if one of them is short lived.

In the quantum mechanical formalism, an unstable de-
caying state (‘Gamov state’) is characterized by an en-
ergy width Γ > 0, leading to a damped behavior in time
e−i(E−i Γ

2 )t. If particles and states are considered in a spe-
cial relativistic framework, the energy is part of an energy-
momentum vector in Minkowski space. What then hap-
pens with the energy width for a relativistic resonance,
how does it have to be implemented in a Lorentz transfor-
mation compatible framework, do we have to talk about
a momentum width too?

Massive stable particles are characterized by the trans-
lation and rotation eigenvalues of mass and spin. In a rel-
ativistic framework the spin determining rotation group
comes as part of the Lorentz group. What about a spin-
ning unstable particle – do we have to introduce also some
sort of a spin width?

In the following we draw out the main lines of an an-
swer to these questions. We begin with a kinematic anal-
ysis of relativistic unstable states (resonances)2. With re-
spect to the possible spreads in energy, momentum and
spin we employ Wigner’s method of Poincaré group repre-
sentations as induced by representations of the space-time
translation and rotation groups. This method is prepared
in Section 3 in the context of stable particles in such a way
that it can be taken over and used to describe unstable
particles. The first steps are done in Section 4, where we
find a relativistically compatible wave function in space
and time.

With it, the non-orthogonality between states one of
which is unstable can be calculated for a specific Lorentz
frame (Sect. 4.2). Their scalar product 〈1|2〉 is given by
their overlap integral in space; instead of a delta distri-
bution we find a function of their momentum difference
which is widened by the momentum spread. The Lorentz
compatible most general case is not yet treated.

Finally, in Section 5, we describe the appearance of
a phenomenon which we call ‘spin spread’. The spin of a

2 We presented momentum and spin spread on the yearly
‘Workshop on Resonances and Time Asymmetric Quantum
Theory’ in Clausthal-Zellerfeld (Germany), 6 to 10 August,
2000 (unpublished)

Fig. 2. Production of a resonance c between particles a and b
by external variation of the energy of (a, b)

short-lived state cannot be infinitely sharp, and we present
a formalism to describe the appearance of ‘spin neighbors’
different by 1 unit from the original spin value. This opens
the possibility for two states with unequal spin to be non-
orthogonal to each other.

2 Energy-momentum properties
of unstable particles

The two types of reactions that can produce a free unsta-
ble particle c are ‘production’ (2.1) and ‘decay’ (2.2)

a+ b −→ c+ d+ e+ · · · (c −→ x+ y + z + · · · ) (2.1)
a −→ b+ c (c −→ x+ y + z + · · · ) (2.2)

In terms of the kinematic variables of particle c we may
describe the most general condition of its birth by the
two-body reaction

a+ b −→ c+ d (c −→ x+ y + z + · · · ) (2.3)

where d represents the energy-momentum sum of all the
other particles produced in the same reaction and assumed
to be stable.

The situation we describe with reaction (2.3) is a free
unstable particle produced as one entity (Fig. 1), in con-
trast to an intermediate state which is produced in parts
by varying at will the energy of the incoming particles
a and b through a resonance energy at which their cross
section typically goes through a maximum (Fig. 2).

2.1 Centre of mass system of the production reaction

After specifying the total energy
√
s, the masses mc and

md as well as the decay width Γ of particle c, we may
calculate in the centre of mass system of reaction (2.3)
the energy Ec and the momentum kc of particle c. The
conservation laws determine them to be

Ec =
√
s(1 + u− v)/2

kc =
√
s
√

(1 + u− v)2 − 4u/2, (2.4)

with the abbreviations u = m2
c/s and v = m2

d/s. If the
mass mc does not have a sharp value but is statistically
distributed around its central value mc with variation
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Fig. 3. Contours of constant T = δE/δk in the u-v plane in
the centre of mass system of reaction (2.3). The physical region
is the lower left hand triangle. T is seen to be in the interval
−1 ≤ T ≤ 0 in die entire physical region

±δm, the ensuing variations in Ec and kc are in first order
of δm 3

δE =
∂E

∂u

du

dm
δm =

√
uδm (2.5)

δk =
∂k

∂u

du

dm
δm =

−1 + u− v√
(1 + u− v)2 − 4u

√
uδm (2.6)

We note that the ratio δE/δk is always in the interval
−1 ≤ δE/δk < 0 because the domain of u and v is re-
stricted to 0 < u < 1, 0 ≤ v < 1, |√u| + |√v| < 1.

In Fig. 3 the u-v-plane is shown with contours of con-
stant δE/δk, also called T , derived from (2.5), (2.6). It is
interesting to note that the value of T , which describes
how the uncertainty of m propagates into energy and mo-
mentum, depends on the overall reaction as well as on the
unstable particle itself. It is easy to see from (2.4) to (2.6)
that T is equal to the velocity of particle d, the energy-
momentum sum of all the reaction partners of the unstable
particle c. This holds for the moment in the centre of mass
of the production reaction but can be generalized.

For the exponential decay a Breit-Wigner form for mc

is appropriate, and the width of the distribution is given
by δm = Γ/2. The corresponding widths of E and k are

∆E =
√
uΓ/2 (2.7)

∆k =
−1 + u− v√

(1 + u− v)2 − 4u

√
uΓ/2. (2.8)

We call them energy- and momentum-spread.

2.2 Lorentz-boost along the direction of motion

If a particle characterized by (E, k,∆E,∆k) is Lorentz-
boosted along its direction of motion, using the velocity

3 The index c is omitted from here onwards

β and γ2 = 1/(1 − β2), the values in the new system are
given by (

E′

k′

)
= γ

(
1 β
β 1

)(
E

k

)
(2.9)

(
∆E′

∆k′

)
= γ

(
1 β
β 1

)(
∆E

∆k

)
(2.10)

The widths (∆E,∆k) transform exactly as the energy-
momentum (E, k). The variable T = ∆E/∆k transforms
as

T ′ =
T + β

Tβ + 1
, (2.11)

it can reach all values in the interval −1 ≤ T < 1 even
though it was restricted to the interval −1 ≤ T < 0 in the
centre of mass system of reaction (2.3).

The invariants of the Lorentz-boost are

(E, k)2 = E2 − k2 = m2

(∆E,∆k)2 = (∆E)2 − (∆k)2 = −B2 (2.12)
(E, k)(∆E,∆k) = E∆E − k∆k = mΓ/2

The third relation in (2.12) is best evaluated in the rest
system of the unstable particle where k = 0 and E = m. In
the second relation we have introduced B (capital beta);
the decaying state is characterized by both Γ and B. It
turns out that (∆E,∆k) is spacelike. One verifies this in
the centre of mass system of reaction (2.3):

−B2 = (∆E)2 − (∆k)2

=
−4uv

(1 + u− v)2 − 4u
Γ 2

4
≤ 0 (2.13)

In a diagram E vs. k a stable particle with rest mass m
is located on the hyperbola E =

√
(k2 +m2) through E =

m at k = 0 (Fig. 4). If this particle is unstable so that its
mass is distributed around m with width Γ one may draw
two additional hyperbolas through E = m ± Γ/2 at k =
0. The unstable state is characterized by a small vector
(∆E,∆k) at (E, k) connecting the two outer hyperbolas,
the slope not exceeding 1. This restriction is a consequence
of the spacelike nature of (∆E,∆k). The unstable particle
is measured as a statistical ensemble of individual events.
Each individual event is represented as a point along the
small vector. There is a complete correlation between the
deviations from the mean in E and the deviations from
the mean in k.

2.3 Interpretation and examples

In the rest system (*) of the unstable particle where E∗ =
m, k∗ = 0, ∆E∗ = Γ/2 this means especially that |∆k∗| is
at least as large as Γ/2. The different parts of the mass
distribution are not all at rest; when the centre is at rest
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Fig. 4. An unstable particle in the energy-momentum plane
is characterized by a straight line through the point (E, k) on
the hyperbola (m), the relation between ∆E, ∆k and Γ is
displayed

Table 1. Values assumed by the two 4-vectors in the two spe-
cial Lorentz frames

4-vector Central rest system Sharp energy system

(E, k) (m, 0) m

(√
1 + Γ2

4B2 , Γ
2B

)

(∆E, ∆k) Γ
2

(
1, −

√
1 + 4B2

Γ2

)
(0, −B)

the two wings fly apart in opposite directions. One may
say that an unstable particle cannot come entirely to rest.
The consequences for the spin of unstable particles are
discussed further down. The velocities involved are of the
order of Γ/m times the speed of light, which can be read
off Fig. 4.

The value of ∆k∗ can also be calculated directly from
(2.7), (2.8) and (2.10) by applying a boost back into the
rest system of the unstable particle (velocity β = −k/E,
(2.4)):

∆k∗ =βγ∆E + γ∆k = − k

m
∆E +

E

m
∆k (2.14)

=
−1 + u+ v√

(1 + u− v)2 − 4u
Γ

2
(2.15)

The existence of the two fourvectors gives rise to two
special Lorentz frames, one in which the average momen-
tum k = 0, we call it ‘the central rest system’ of the un-
stable particle, and one in which ∆E = 0; this we call
‘the sharp energy system’ of the unstable particle. Here
we have added ‘central’ to the familiar name of ‘rest sys-
tem’ because of the peculiar situation that the particles in
the statistical ensemble that makes up the resonance can
not all be simultaneously at rest. Table 1 summarizes the
values of the two 4-vectors in these two systems.

The following examples illustrate the different values
of ∆E/∆k and B2 as functions of the way the unstable
state is produced. A ρ-meson (m = 0.77 GeV/c2

, Γ =

Table 2. Numerical values of some relevant variables for the
three examples quoted in the text

Variable Case 1 Case 2 Case 3

kbeam (GeV/c) 2.5 100 2 × 2.5√
s (GeV/c2) 2.37 13.73 5.00

u 0.1059 3.144 · 10−3 0.242
v 0.1676 4.669 · 10−3 0.140

CM system of the reaction:

E (GeV/c2) 1.1101 6.855 2.755
k (GeV/c) 0.7969 6.812 1.241
∆E/(Γ/2) 0.325 0.0561 0.492
∆k/(Γ/2) −0.511 −0.0568 −0.890

CM system of the unstable particle:

∆k∗/(Γ/2) -1.075 -1.000030 -1.245
Invariant:

B/(Γ/2) 0.3943 0.00892 0.7416

0.15 GeV/c2) is produced by a π-meson beam on a hydro-
gen target in the forward direction: π + p −→ ρ+ p. In a
first case the beam momentum kbeam is 2.5 GeV/c, in a
second case kbeam = 100 GeV/c. The third case is a stable
D+(1869 MeV/c2) and an unstable D∗−(2460 MeV/c2

,

Γ = 25 MeV/c2), produced as a pair in e+e− annihilation
at

√
s = 5 GeV/c2. We quote in Table 2 numerical values

of relevant variables for these cases.
Another possible reaction is a nucleus decaying from

some metastable state 1 into a state 2 with very short
lifetime (1/Γ ) by the emission of a light particle. If one
identifies

√
s with the mass of state 1, u with the square

of the mass of state 2 over s (u close to 1), and neglecting
the mass of the light particle (v = 0) we find B2 = 0 and
∆k∗ = −Γ/2 using (2.13) and (2.15).

2.4 Lorentz-boost in an arbitrary direction

Up to here the uncertainty ∆k in momentum was along
the direction of motion. Now we want to apply a Lorentz
transformation with velocity −→

β along a different, arbi-
trary direction. Let −→

β have an angle θ with −→
k and let−→

∆k be parallel to −→
k . Expressing the components along −→

β
by k cos θ and ∆k cos θ, and the components transverse to−→
β by k sin θ and ∆k sin θ, the kinematic variables of the
unstable particle E,

−→
k ,∆E,

−→
∆k = (∆k/k)−→k transform

from the rest system of (2.3) into the primed system as
follows:

E′ = γE + βγk cos θ;
k′ cos θ′ = βγE + γk cos θ; (2.16)
k′ sin θ′ = k sin θ;
∆E′ = γ∆E + βγ∆k cos θ;

∆k′ cosΘ′ = βγ∆E + γ∆k cos θ; (2.17)
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∆k′ sinΘ′ = ∆k sin θ,

where β = |−→β | and γ2 = 1/(1 − β2). In the primed sys-
tem, the angle of the 3-momentum vector

−→
k′ is denoted by

θ′, whereas the angle of the momentum uncertainty
−→
∆k′

against −→
β is denoted by Θ′. These two angles will be dif-

ferent unless sin θ vanishes: dividing the last two equations
in each group, the transformed angles are given by

tan θ′ =
1
γ

sin θ
βE

k + cos θ
(2.18)

tanΘ′ =
1
γ

sin θ
β∆E

∆k + cos θ
(2.19)

These two expressions are not the same because the ratio
E/k of the timelike vector (E,−→k ) is > 1 whereas the
ratio ∆E/∆k of the spacelike vector (∆E,−→∆k) is < 1. We
conclude that in the general case the two vectors

−→
k′ and−→

∆k′ will no longer be parallel but may in principle have
any angle between them.

The situation described with the two variables E and
∆k in Sects. 2.1, 2.2 and 2.3 reveals itself as a special case
of a 4-vector (∆E,−→∆k) where −→

∆k remained parallel to −→
k ,

as long as one stayed in a special set of Lorentz systems.
These are defined as being connected to the centre-of-mass
system of the production reaction by a boost along the
direction of motion of the unstable particle.

The most general case of a spread vector (∆E,−→∆k) is
given by 4 numbers which describe the complete correla-
tion between the deviation of the individual particles of
the ensemble from their mean values of E, kx, ky, and kz.

3 Stable states

In this section we determine the relativistically compati-
ble wave function for a stable particle from its Feynman
propagator.

3.1 Wave functions for stable scattering states
in quantum mechanics

The time behavior of a stable energy eigenstate in quan-
tum mechanics is described by a U(1)-representation of
the time translations R

representation: R � t �−→ e−iEt ∈ U(1)
ψ(t) = e−iEt|ψ〉 with energy E ∈ R

(3.1)

The free scattering states with momentum −→
k can be

built - with the position space orbits in the Schrödinger
picture |ψ〉 ∼= ψ(−→x ) - by plane waves e−i

−→
k −→x which, by

themselves, are no Hilbert states - only their packets∫
d3ke−i

−→
k −→x µ(−→k ) which use square integrable momen-

tum functions
∫
d3k|µ(−→k )|2 < ∞. For a constant poten-

tial V0, energy and the momentum of a scattering state
are related as follows

−→
k

2

2 = E − V0 (3.2)

In polar coordinates for a radial symmetric dynam-
ics (angular momentum invariant Hamiltonian [−→L , H] =
0) the scattering states are built by packets of spheri-
cal Bessel waves jL for the Hilbert space with the radial
translations r ∈ R

+ functions for each angular momentum
eigenvalue L = 0, 1, . . . . The spherical Bessel functions [6]
are definable as plane wave coefficients with respect to the

sperical harmonics YL
0 (θ, ϕ) =

√
1+2L
4π PL(cos θ)

ei
−→
k −→x = eikr cos θ = eiRζ : jL(R) =

1
2iL

∫ 1

−1
dζ PL(ζ)eiRζ

= RL(− 1
R

d

dR
)L sinR

R

⇒ ei−→q −→x =
∞∑

L=0

iLjL(qr) (1 + 2L)PL(cos θ) (3.3)

Time reversal, implemented by t ↔ −t and number
conjugation α ↔ α, relate to each other the conjugated
Hankel waves in the standing Bessel waves

jL = h+
L−h−

L

2i , h±
L (R) = RL(− 1

R
d

dR )L e±iR

R
(3.4)

They are the in- and outcoming waves with the large dis-
tance behavior reflecting the large time (future and past)
behavior

R → ∞ :



jL(R) → sin(R− Lπ

2 )
R ,

standing waves
h±

L (R) → (∓i)L e±iR

R ,

in- and outgoing waves

(3.5)

3.2 Energy-momentum and spin in Minkowski space

Special relativity is characterized by the Poincaré group
SO0(1, 3)−→× R

4 as semidirect product of the orthochro-
nous Lorentz group SO0(1, 3) acting on the spacetime
translations (Minkowski space) x ∈ R

4 and on its dual
space, the translation eigenvalues q ∈ R

4, which consti-
tute the energy-momentum space.

As first realized by Wigner, particles can be classified
according to the stability group for their causal energy-
momenta, i.e. for q ∈ R

4 with q2 = m2 ≥ 0. Strictly
positive mass particles, m2 > 0, e.g. electrons, have trans-
formation properties with respect to spin SU(2). Massless
particles, m2 = 0, e.g. photons, are characterized with re-
spect to the spin subgroup polarization SO(2).

In the following we will restrict ourselves to massive
particles, i.e. to an embedding of the spin group SU(2),
the double cover4 of the rotation group SO(3) ∼=
SU(2)/{±12}, into the real 6-dimensional group SL( IC2),
the double cover of the orthochronous Lorentz group
SO0(1, 3) ∼= SL( IC2)/{±12}. For a relativistically compat-
ible description, the nonrelativistic direct product group

4 In the following, both SO(3) and SU(2) will be called -
somewhat sloppily - both spin and rotation group, and both
SO0(1, 3) and SL( IC2) come under the name of Lorentz group
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with the rotations and the time translations is embedded
[5] as a subgroup of the semidirect Poincaré group

SO(3) × R ↪→ SO0(1, 3)−→× R
4

SU(2) × R ↪→ SL( IC2)−→× R
4 (3.6)

With respect to the translation subgroups, the unitary
representations of the time translations are characterized
by energies E ∈ R, and the ones of spacetime translations
by energy-momenta q ∈ R

4:

R � t �−→ e−iEt ∈ U(1), R
4 � x �−→ e−iqx ∈ U(1)

(3.7)

With respect to the homogeneous subgroups: Halfin-
teger and integer spin numbers S characterize the irre-
ducible unitary representation of the spin group

DS : SU(2) −→ SU(1 + 2S) ⊂ GL( IC1+2S), (3.8)

whereas the finite dimensional irreducible representations
of the Lorentz group - which, if nontrivial, are non-unitary
- come with halfinteger and integer ’left-right spin’ num-
bers [L|R]

D[L|R] : SL( IC2) (3.9)

−→ SL( IC(1+2L)(1+2R)) ⊂ GL( IC(1+2L)(1+2R))

The relativistically compatible embedding of a stable
particle with spin-mass (S,m), characterized in its rest
system by a spin SU(2) and time translation R represen-
tation in the unitary group U(1)◦SU(1+2S) of a complex
(1 + 2S)-dimensional vector space

SU(2) × R � (u = ei−→α −→σ /2, t)

�−→ DS(u) × e−imt ∈ U(1 + 2S) (3.10)

is given by

SU(2) × R � (S,m) ↪→ ([L|R]; q) ∈ SL( IC2)−→× R
4

S,L,R ∈ {0,
1
2
, 1, . . . ), q2 = m2 > 0. (3.11)

The relation of spin S to Lorentz {L,R} will be discussed
below.

3.3 Representations of spacetime translations

The embedding of the unitary representations of the time
translations for an energy E2 = m2 into a the unitary rep-
resentations of the spacetime translations for energy-mo-
mentum q2 = m2 is characterizable with the generalized
functions

δ(E2 −m2) ↪→ δ(q2 −m2) (3.12)

The unitary time translation matrix elements from
t �−→ eitm ∈ U(1) can be written as supported by an

energy distribution(
cos tm

−i sin tm

)
=
∫
dE ε(m)

(
m

E

)
δ(E2 −m2)e−tiE

=
∫
dE ε(E)

(
E

m

)
δ(E2 −m2)e−tiE

= −ε(t) ∫ dE
iπ

1
E2

P−m2

(
E

m

)
e−tiE

(3.13)

Here complex distributions are involved with a Dirac func-
tion as real part and a principal value distribution as imag-
inary part (integration with positive o, then limit o → 0)

a ∈ R, ± 1
iπ

1
a∓io = δ(a) ± 1

iπ
1

aP
(3.14)

and the step functions

a ∈ R,

{
ϑ(a) + ϑ(−a) = 1
ϑ(a) − ϑ(−a) = ε(a) = a

|a|
(3.15)

The time representation matrix elements are embed-
dable with an energy-momentum mass hyperboloid

R � m ↪→ q = (qj)j=0,1,2,3 ∈ R
4 with q2 = m2 (3.16)

in two ways

dt

(
cos tm

sin tm

)
= m

(− sin tm

cos tm

)

↪→


∂j
(

C(x|m)
Sj(x|m)

)
= m

(−Sj(x|m)
C(x|m)

)
∂j
(
cj(x|m)
s(x|m)

)
= m

(−s(x|m)
cj(x|m)

) (3.17)

The boldface symbols with two arguments for transla-
tions and eigenvalue, e.g. C(x|m), embed the trigono-
metric functions with the corresponding notation for time
translations and energy eigenvalue, e.g. cos tm.

Both embeddings come with a Lorentz scalar and a
Lorentz vector: One embedding (Lorentz scalar cosine and
vector sine) involves the functions

(
C(x|m)

−iSj(x|m)

)
=
∫

d4q

(2π)3
ε(m)

(
m

qj

)
δ(q2 −m2)e−iqx (3.18)

which occur as Fock state functions for relativistic particle
fields (next subsection). The other embedding (Lorentz
scalar sine and vector cosine) with an ordered Dirac ener-
gy-momentum measure

(
cj(x|m)

−is(x|m)

)
=
∫

d4q

(2π)3
ε(q0)

(
qj

m

)
δ(q2 −m2)e−iqx

= −ε(x0)
∫

d4q

iπ(2π)3
(

qj

m

) 1
q2P −m2 e−iqx (3.19)

defines distributions which occur for the relativistic field
quantization. The ordered Lebesque measure
d4qε(q0)ϑ(q2) leads to causal support(

cj(x|m)
s(x|m)

)
= 0 for x2 < 0 (3.20)
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All those embeddings, (C,Sj) and (cj , s), are
‘on-shell’, i.e. energy-momentum supported by q20 −−→q 2 =
m2. They are matrix elements of spacetime translation
representations in unitary Poincaré group representations.

The cross over sums are used in Feynman propaga-
tors for relativistic quantum particle fields and embed the
causal time representations

e∓i|tm| = C(x|m) ∓ ε(x0m)is(x|m)
=
∫

d4q
(2π)3ϑ(±x0q0)2|m|δ(q2 −m2)e−iqx

= ∓ ∫ d4q
iπ(2π)3

|m|
q2±io−m2 e−iqx

(3.21)

As visible in the last line, Feynman propagators are sup-
ported also ‘off-shell’, i.e. for q20 − −→q 2 �= m2 (’virtual par-
ticles’).

The embedding of the nonrelativistic in- and outgoing
wave functions of the foregoing subsection

ψ±
L (t,−→x ) = e−iEtkh±

L (kr)YL
m(θ, ϕ),

with k =
√

2(E − V0)

e.g. ψ±
0 (t,−→x ) = e−iEt e

±ikr

r
, ψ±

1 (t,−→x )

= e−iEt 1 ∓ ikr

kr

e±ikr

r

×
√

3
4π

(
∓ 1√

2
sin θ e±iϕ

cos θ

)
, . . . (3.22)

is seen explicitly in the harmonic analysis with respect to
time and position space translations. In the scalar cosine of
Minkowski spacetime the time representations come with
standing L = 0 spherical waves as position realizations, if
the energy q0 surpasses the mass threshold m

C(x|m)
|m| =

∫
d4q

(2π)3
δ(q2 −m2)e−iqx (3.23)

= −1
r

d

dr

∫
d2q

(2π)2
δ(q2 −m2)e−iqx|x=(t,r)

=
∫

dq0
(2π)2

ϑ(q20 −m2)e−iq0t sin r
√
q20 −m2

r

For Lorentz scalar integrands, the 2-sphere integration
(polar coordinates with r = |−→x |) over the 2-sphere
SO(3)/SO(2) goes over from the Lorentz group SO0(1, 3)
to an abelian noncompact subgroup SO0(1, 1) with trivial
spin. It yields the characteristic 2-sphere distribution fac-
tor 1

r (Kepler factor). For the Lorentz group SO0(1, 1) in
two spacetime dimensions the integrals d2q = dq0dq3 both
over the energy q0 and the directed momentum modulus
q3 = ε(q3)|−→q | go over the full real axis

∫∞
−∞.

The harmonic analysis of both the scalar sine and the
ordered scalar sine displays irreducible time representa-
tions multiplied with spherical waves for energies q20 over
the threshold m2 (on shell). The off shell contributions of
the ordered sine for q20 smaller than m2 give irreducible
time representations, multiplied with a Yukawa potential(

1
ε(x0)

) is(x|m)
m

= −
∫

d4q

(2π)3

(
ε(q0)δ(q2 − m2)

− i
π

1
−q2

P+m2

)
e−iqx

=
1
r

d

dr

∫
d2q

(2π)2

(
ε(q0)δ(q2 − m2)

− i
π

1
−q2

P+m2

)
e−iqx|x=(t,r)

=
∫

dq0
i(2π)2

e−iq0t

[
ϑ(q20 −m2)

(
−ε(q0)i

sin r
√

q2
0−m2

r

cos r
√

q2
0−m2

r

)

+ϑ(m2 − q20)
(

0

e
−r
√

m2−q2
0

r

)]
(3.24)

The harmonic analysis of the Feynman propagator
contains the sum of an ‘on shell’ particle with spherical
wave, in- or outgoing as determined by ±io resp., and an
‘off shell’ Yukawa interaction

∓
∫

d4q

iπ(2π)3
1

q2 ± io−m2 e−iqx

= ±1
r

d

dr

∫
d2q

iπ(2π)2
1

q2 ± io−m2 e−iqx|x=(t,r)

= ±
∫

dq0
i(2π)2

e−iq0t

[
ϑ(q20 −m2)

e±ir
√

q2
0−m2

r

+ϑ(m2 − q20)
e−r

√
m2−q2

0

r

]
(3.25)

3.4 Relativistic wave functions
for spinless stable particles

The matrix elements of unitary spacetime translation rep-
resentations of the foregoing subsection arise for a massive
spinless particle, e.g. the π0-meson, considered as stable.

A relativistic hermitian scalar Bose field A(x) for such
a particle has the harmonic decomposition into translation
eigenvectors, called creation operators u(−→q ) and annihi-
lation operators u	(−→q ) for momentum −→q

A(x) =
∫

d3q
q0(2π)3

e−iqxu(−→q )+eiqxu�(−→q )√
2

with q = (q0,−→q ), q0 =
√
m2 + −→q 2

(3.26)

As indexed by the momenta −→q ∈ R
3, the associate state

space is overcountably infinite dimensional.
The basic vectors have as commutators (quantization)

and as Fock state value for anticommutators (denoted
with 〈. . . 〉F)

[u	(−→p ),u(−→q )] = (2π)3q0δ(−→q − −→p )
〈{u	(−→p ),u(−→q )}〉F = 〈u(−→p )|u(−→q )〉 = (2π)3q0δ(−→q − −→p )

(3.27)

With the shorthand notation for translation dependent
(anti) commutators of spacetime dependent operators

ε = ±1 : [A,B]ε(x) = [A(x2), B(x1)]ε
= A(x2)B(x1) + εB(x1)A(x2)

for all x = x1 − x2 (3.28)
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the Feynman propagator sums up the on-shell Fock value
of the quantization opposite anticommutator and the on-
and off-shell causally ordered quantization commutator

〈{A,A}(x) − ε(x0)[A,A](x)〉F

=
C(x|m) − ε(x0)is(x|m)

m

= −
∫

d4q

iπ(2π)3
1

q2 + io−m2 eiqx (3.29)

The wave function for an outgoing scalar particle (de-
noted with the corresponding non-boldface letter – here
A for the particle field A), considered from a reference
system wherein the particle has energy q0 = E > m can
be obtained by Dirac-picking with δ(q0 − E) in the har-
monic expansion of the Feynman propagator above the
corresponding contribution with the angular momentum
L = 0 outgoing Hankel wave (an irrelevant normalization
factor i

(2π)2 is omitted)

A(t, r) = −
∫

d4q

2π2

1
q2 + io−m2 e−iqxδ(q0 − E)

= e−iEt e
ikr

r

= e−iEt kh+
0 (kr)

with k =
√
E2 −m2 (3.30)

Summarizing, the relativistic wave function for an outgo-
ing scalar particle is

A(t, r) = e−iEt eikr

r
(3.31)

In the rest system of the particle, denoted by the sup-
script rs=, one obtains the product of the time orbit with
the Kepler 2-sphere distribution factor

(E, k) rs= (m, 0) ⇒ A(t, r) rs=
e−imt

r
(3.32)

4 Unstable states

4.1 Construction of the wave function

Our starting point is (3.30) where the wave function for
a stable particle of a given energy E > m was obtained
from the harmonic expansion of the Feynman propagator:
From the reservoir of all wave functions e−iqx one picks
the one with energy E.

For an unstable particle we introduce two modifica-
tions: Firstly the distributional ‘io’ in (3.30) is replaced
by the invariant width ‘imΓ ’. Obviously the stable parti-
cle results have to reappear in the limit Γ → 0.

Secondly, q0 is no longer fixed to be equal to E; the
integration variables must be correlated in a different way.
In the simple case treated in Sects. 3.1 to 3.3 (−→∆k parallel

to −→
k ), both k ≡ |−→k | and ∆k ≡ |−→∆k| are independent of

direction, and the correlation is given by the expression

q0 − E

|−→q | − k
=
∆E

∆k

Therefore we replace in (3.30)

δ(q0 − E) ↪→ δ(C(q0 − E) − S(|−→q | − k)) (4.1)

where

C = ±∆k/
√

(∆k)2 − (∆E)2

S = ±∆E/
√

(∆k)2 − (∆E)2 (4.2)

The normalization factor
√

(∆k)2 − (∆E)2, or B
(cf. (2.12)) was introduced because it guarantees that the
case of ∆E = 0 falls back into the old form δ(q0 −E), and
because it is Lorentz-invariant. The signs in (4.2) must be
chosen such that C > 0.

Looking at the new δ-distribution (4.1), we observe
that its argument may be interpreted as the energy com-
ponent of a vector in an energy-momentum space spanned
by the deviations (q0 −E) and (|−→q |−k). In fact, the nor-
malized coefficients C and S may be interpreted as coeffi-
cients of a Lorentz boost

C = cosh ζ, S = sinh ζ (4.3)

from the general system in which the decaying particle has
(E, k) and (∆E,∆k) to the sharp energy system (primed
variables) in which ∆E′ = 0:(

a′

b′

)
=

(
C −S
−S C

)(
a

b

)
(4.4)

for (
a

b

)
=

(
E

k

)
,

(
∆E

∆k

)
,

(
t

r

)
,

(
q0
Q

)

The variable ζ in the coefficients (4.2) is given in terms of
the velocity β of this boost as ζ = arctanhβ.

C(q0 − E) − S(Q− k) = q′
0 − E′

E2 − k2 = E′2 − k′2 (4.5)
Et− kr = E′t′ − k′r′

4.1.1 Harmonic analysis

In the sharp energy system (ses) the wave function for an
unstable particle with energy E > m is

ψ(t, r) ses= −
∫

d4q

(2π)2
δ(q0 − E)

q2 −m2 + imΓ
e−xiq

= e−iEt e
ikr

r
(4.6)



W. Blum, H. Saller: Relativistic resonances as non-orthogonal states in Hilbert space 287

with Γ > 0 and

k =
√
k2 + imΓ , where k2 = E2 −m2. (4.7)

The case of the general system requires the new Dirac
delta function (4.1) in the Fourier integral. The integral
is first solved in the sharp energy system (primed vari-
ables), the result (4.8) is then Lorentz-transformed into
the general system (unprimed variables).

ψ(t, r) = −
∫

d4q

(2π)2
δ(C(q0 − E) − S(Q− k))

q2 −m2 + imΓ
e−xiq

= e−iE′t′ eik′r′

r

= e−iEt e
ikr

r
ei(k′−k′)r′

(4.8)

because of (4.5). Here

k′ − k′ =
√
k′2 + imΓ − k′ which becomes

imΓ/2
k′

(4.9)

to first order of mΓ/k′2. This dimensionless parameter is
of the order Γ/m � 1. Inserting (4.4) we find the factor

(k′ − k′)r′ =
imΓ/2

−SE + Ck
(−St+ Cr) (4.10)

which, using (4.2) and (2.12), turns out to be −i∆Et +
i∆kr. Therefore the relativistic wave function of the un-
stable state is

ψ(t, r) = e−i(E−i∆E)t ei(k−i∆k)r

r
(4.11)

to first order of Γ/m.
In the central rest frame (crs) the wave function takes

the form

ψ(t, r) crs= e−i(m−iΓ/2)t e
−|∆k∗|r

r
(4.12)

Note that∆k∗ ≤ −Γ/2 < 0 in the central rest frame of the
decaying state. An unstable state unavoidably has some
spatial extension.

If one does not want to go to the first order approx-
imation in Γ/m one may define a complex constant η in
(4.9)

k′ − k′ =
√
k′2 + imΓ − k′ def= iηB (4.13)

which is 1 in the first order of Γ/m. It may be expressed
in terms of a ratio of invariants of (2.12) and is

iη =
mΓ/2
B2

[
1 −

√
1 + i

4B2

mΓ

]
(4.14)

With it the wave function generally takes the form

ψ(t, r) = e−i(E−iη∆E)t ei(k−iη∆k)r

r
(4.15)

Looking back at the integral (4.8), we see how the δ-
function picks out the particular solution from the
Lorentz-invariant reservoir of all possible solutions. We
note that the variables E, k,∆E,∆k and their invariants
m2,mΓ and B2 (c.f. (2.12)) fall into two categories. The
first comprises m2 and mΓ – they belong to the Lorentz-
invariant part of the integrand (4.8) and are therefore a
universal description of the unstable state, independent of
a particular Lorentz frame or any particular production
conditions. The second comprises the others, E, k,∆E,∆k
and B – they appear in the δ-function of the integrand
(4.8) and therefore describe the unstable state in the par-
ticular conditions in which it was produced. There is an
analogy with the spin of stable particles: the magnitude
of spin is a universal property of the particle (mathemat-
ically characterized by the dimension of the representa-
tion space), the spin component is a particular property
of the particle which depends on the production condi-
tions (mathematically characterized by an eigenvector in
the representation space).

A suitable notation would separate the two categories
of variables. The unstable state, characterized by 4 real
numbers, could be written as |m2,mΓ ; k,∆k〉 or |m2,mΓ ;
E,∆E〉, the universal variables to the left of the semikolon,
the experiment-dependent to the right. The correspond-
ing notation for a spin state (of a stable particle) would
be |S;S3〉.

4.1.2 Comparison of (4.11) with the traditional ansatz

Traditionally [2] [8] one describes a decaying state in its
rest system with the ansatz

ψ(t, r) rs=
1
r
e−i(m−iΓ/2)t (4.16)

If the state has energy-momentum (E, k), (4.16) is re-
placed by

ψ(t, r) = e−i(E−i∆E)t ei(k−i∆k)r

r
(4.17)

The imaginary parts traditionally also form an energy-
momentum four-vector (∆E,∆k) which is the result of
the same Lorentz boost that transforms

(m, 0) −→ (E, k)(
Γ

2
, 0
)

−→ (∆E,∆k) =
(
E

m

Γ

2
,
k

m

Γ

2

)
(4.18)

The difference in the two approaches is in the norm of
(∆E,∆k); our spread vector is spacelike, the traditional
one is timelike. The traditional spread vector keeps the
same ratio of the momentum over the energy components
in all Lorentz frames:

∆k

∆E

∣∣∣∣
traditional

=
k

E
(4.19)

Traditionally, there is no sharp energy system, and the
momentum spread in the particle’s rest frame is zero.
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∫
dqze−i(E+(qz−kz)∆E/∆kz)t+i(kx+(qz−kz)∆kx/∆kz)x+i(ky+(qz−kz)∆ky/∆kz)y+iqzz

iπD

D = (qz − kz)2
−B2

∆k2
z

+ (qz − kz)
mΓ

∆kz
+ imΓ (4.26)

This difference apart, (4.17) and (4.11) are the same.
In a practical measurement of a continuous spherical wave
emanating from a target at r = 0 one would measure the
presence of the decaying particle as a function of the time
in the particle’s rest frame, after eliminating the space
argument by writing r = tβ = tk/E. Both (4.11) and
(4.17) then take the form

ψ(t) =
1
r
e[−i(E−i∆E)+i(k−i∆k)k/E]t

=
1
r
e−i[(E2−k2)−iE∆E+ik∆k]t/E

ψ(t) =
1
r
e[−i(m−iΓ/2)m/E]t;

ψ(t∗) =
1
r
e−i(m−iΓ/2)t∗

(4.20)

using (2.12). Here t∗ = tm/E is the time in the particle
rest frame. This shows that our approach produces the
same result as the traditional approach does – the space-
like nature of the energy-momentum spread in the first
approximation has no consequence for the wave function.
Also the accurate form (4.15) does not lead to a qualita-
tively different behavior.

It is only when spin is included that the spacelike na-
ture of (∆E,∆k) becomes essential.

We would like to remark that (4.20) also show the role
of Γ as an inverse lifetime. This follows naturally from
the definition of the wave function in (4.8). The equality
of Γ with the inverse lifetime of the unstable state is the
essential hypothesis in the work of A. Bohm and collabo-
rators [7] for the construction of a unique Gamow vector
for relativistic unstable states.

4.1.3 Fully specified energy-momentum 4-vector
and spread 4-vector

Now let (E,−→k ) and (∆E,−→∆k) be completely specified
(8 real numbers). The three invariants are in this case:

E2 − −→
k

2
= m2 > 0

(∆E)2 − (
−−→
∆k)2 = −B2 < 0

E∆E − −→
k · −→

∆k = mΓ/2 > 0

(4.21)

The wave function ψ(t,−→x ) of this state is defined by
harmonic analysis such that in the Fourier integral over
energy momentum (q0,−→q ) the deviations from the central
values (E,−→k ) satisfy the following relations

q0 − E

∆E
=
qx − kx

∆kx
=
qy − ky

∆ky
=
qz − kz

∆kz
(4.22)

This can be achieved in the Fourier integral by the product
of three delta distributions δIδIIδIII

δI = δ[(∆kz/B)(q0 − E) − (∆E/B)(qz − kz)]
δII = δ[(∆kz/B)(qx − kx) − (∆kx/B)(qz − kz)] (4.23)
δIII = δ[(∆kz/B)(qy − ky) − (∆ky/B)(qz − kz)]

Here we have assumed ∆kz �= 0. (There is always one
∆ki �= 0.) The normalizing factor B appears for the reason
mentioned after (4.2).

We define the relativistic wave function to be

ψ(t,−→x ) =
∫
d4qδIδIIδIII

−i/π
q2 −m2 + imΓ

e−iqx (4.24)

The argument of δI vanishes when q0 = E + (qz − kz)
×∆E/∆kz. After integrating over q0 the remaining inte-
gral (up to constant factors) is∫

d3q
e−i(E+(qz−kz)∆E/∆kz)t ei−→q −→x δIIδIII

(E+(qz−kz)∆E/∆kz)2−q2
x−q2

y−q2
z−m2+imΓ

(4.25)

After the integrals over qx and qy one is left with (see
(4.26) on top of the page). The relevant zero of the de-
nominator D ist at

qz = kz − iη∆kz; (4.27)

here iη is related to the ratio of invariants of (4.21) as
given by (4.14). Inserting qz into the integrand yields the
wave function up to a constant factor which has to be
provided by a proper normalisation. We have

ψ(t,−→x ) = e−i(E−iη∆E)tei(−→k −iη
−→
∆k)·−→x (4.28)

In first order of Γ/m, η is equal to 1. This yields

ψ(t,−→x ) = e−i(E−i∆E)tei(−→k −i
−→
∆k)·−→x (4.29)

Expression (4.29) is the relativistic wave function to first
order in Γ/m for a plane wave propagating in the di-
rection −→

k with energy E and energy-momentum spread
(∆E,−→∆k). −→

k and −→
∆k are not necessarily parallel. Be-

tween the 8 real parameters there are the three invariants
of (4.21). In the notation proposed at the end of Sect. 4.1.1,
such a state is characterized as |m2,mΓ ; −→k ,−→∆k〉.

4.2 Non-orthogonality of unstable states

Now we have the relativistic wave functions in space and
time of the unstable states, we would like to interpret them
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in terms of probabilities. In non-relativistic quantum me-
chanics, the magnitude squared is the probability density,
and the scalar product of two wave functions is the space
integral of the product of one with the complex conjugate
of the other.

In a relativistic framework the time component must
be included. A probability interpretation of the relativistic
wave functions has to be formulated in a Lorentz compat-
ible way. This task is not undertaken here; but for one
special Lorentz frame, the sharp energy system (SES), we
may already formulate the scalar product involving unsta-
ble states.

The SES of an unstable state is defined as the Lorentz
frame in which ∆E = 0 (cf Sec. 2.3). Consider a stable
and an unstable state with different masses (M,m) and
momenta (K, k) but the same energy in the SES:

Stable state |ψs(K,M)〉 =
1
r
e−iEteiKr (4.30)

Unstable state |ψu(k,m, κ)〉 =
1
r
e−iEtei(k+iκ)r (4.31)

The presence of two such states is quite common for re-
actions of type (1.2) at sufficiently high momenta where
in the forward direction the SES coincides with the labo-
ratory system (in which the target was initially at rest).
The momenta are given by K =

√
E2 −M2 and k =√

E2 −m2.
Let the stable state be normalised as usual by the Dirac

delta distribution

〈ψs(K2,M)|ψs(K1,M)〉 = δ(K2 −K1) (4.32)

This is the same as writing

ψs(Ki,M) =
1

π
√

2
sinKir

r
(i = 1, 2; Ki > 0) (4.33)

〈ψs(K2,M)|ψs(K1,M)〉
=
∫ ∞

0
ψs(K1,M)ψ∗

s (K2,M)4πr2 dr

= δ(K2 −K1) (4.34)

The standing spherical wave sin(Kr)/r is appropriate for
normalisation purposes. Equivalently one may have taken
the outgoing spherical wave eiKr/r plus a prescription for
the integration path.

For the scalar product between the stable and the un-
stable state we now take a generalisation of (4.33) and
(4.34):

ψu(ki,m, κ) =
1

π
√

2
sin kir

r
e−κr

(i = 1, 2; ki > 0) (4.35)
〈ψs(K2,M)|ψu(k1,m, κ)〉

=
∫ ∞

0
ψu(k1,m, κ)ψ∗

s (K2,M)4πr2 dr

=
κ/π

(k1 −K2)2 + κ2 (4.36)

This is the scalar product in the SES of two relativis-
tic wave functions, one stable with real momentum K,
the other unstable with complex momentum k + iκ. The
imaginary part κ > 0 sets the scale on which the two mo-
menta k1 and K2 are allowed to be different before the
scalar product vanishes. Expression (4.36) is valid at mo-
menta large compared to κ and k1 − K2 because small
second-order terms κ2/(k1 + K2)2 and (k1 − K2)2/(k1 +
K2)2 were neglected.

Analogously the normalisation of the unstable state is
given by

〈ψu(k2,m, κ)|ψu(k1,m, κ)〉
=
∫ ∞

0
ψu(k1,m, κ)ψ∗

u(k2,m, κ)4πr2 dr

=
2κ/π

(k1 − k2)2 + (2κ)2
(4.37)

This last expression is valid in first order of κ/k and tends
to the delta distribution δ(k1 − k2) as κ goes to zero. In
contrast, (4.36) vanishes with κ because k1 and K2 cannot
be equal in the SES as long as m �= M .

5 Inclusion of spin

It is well known that two simultaneous eigenstates |j1,m1〉
and |j2,m2〉 of the operators J and Jz of total angular mo-
mentum and angular momentum component are orthogo-
nal on each other for different quantum numbers:

〈j1,m1|j2,m2〉 = 0 if j1 �= j2 or m1 �= m2 (5.1)

We propose that (5.1) has to be modified if one of the two
states is short-lived.

For this we first mention three arguments why the an-
gular momentum of short-lived states cannot be infinitely
sharp but acquires an uncertainty which we call ‘angular
momentum spread’ (Sect. 5.1). Since angular momentum
eigenvalues are discrete numbers (integer or half integer)
as a consequence of the compact nature of the underlying
rotation group, an uncertainty in angular momentum, or
spin spread can only mean the occupation of neighbouring
states in addition to the original main state. Insofar as the
spin spread is a small effect one may think of a perturba-
tion so that the original main spin retains its well defined
meaning.

We then have to develop a formalism for the descrip-
tion of spin for relativistic unstable particles which is open
to the possibility of non-orthogonal scalar products be-
tween states of different quantum numbers. With this in
mind, we review for stable particles in Sects. 5.2 and 5.3
how the spin group is embedded in the Lorentz group and
how relativistic wave functions for a given spin state can
be constructed.

On this basis we proceed in Sect. 5.4 to a generalization
valid for unstable states. The new element is the momen-
tum spread in the particle’s central rest frame, it adds a
spin-1 property to the original main spin, creating ‘spin
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neighbours’ around the original spin. Therefore some room
must be created plus and minus one unit of spin in the
representation of the spin group for a given particle. This
is achieved by designating a higher representation of the
Lorentz group than done for the stable case.

5.1 Three direct arguments in favour of the angular
momentum spread of short-lived particles

5.1.1 The spin of a short-lived state can only be measured
with a limited accuracy

Imagine an experiment in which the amount J of spin
angular momentum of a short-lived state is measured us-
ing the method of nuclear spin resonance in a magnetic
field B. The precession frequency ω which is observed for
non zero spin determines J , if the magnetic moment µ is
known; then

J =
µB

ω
.

Let the excited state have energy E, above the ground
level E0, width Γ and mean life τ = �/Γ . Now the fre-
quency can only be measured during the lifetime of the
state and is therefore limited to the accuracy ∆ω ≈ 1/τ ,
so that the accuracy of the measurement of J is given by

∆J ≈ ∆ω

ω2 µB ≈ 1
τ

J2

µB
,

which becomes smallest for the largest value of µB, and a
small J .

In this experiment the interaction energy between the
apparatus and the excited state is represented by µB; it
cannot be made as large as the value of E − E0 if the
state to be measured should remain distinguished from
the ground state. Therefore we have to keep µB < E−E0.
Assigning the lowest integer non-zero value to J , J = �,
we arrive at an uncertainty that cannot be smaller than

∆J ≈ 1
τ

�
2

E − E0
=

�Γ

E − E0

∆J

�
≈ Γ

E − E0
(5.2)

5.1.2 The angular momentum component of a short-lived
state can only be measured with a limited accuracy

In a Stern-Gerlach experiment let a beam of short-lived
states of energy E be created from a beam of atoms that
are in the ground state with energy E0. In the magnetic
field B the presence of an angular momentum component
m� in the direction of the field inhomogeneity changes the
energy to be E′ = E − µB, where µ is the magnetic mo-
ment of the state. Knowing µ, one measures m by record-
ing the energy difference; then m is given by

m =
E′ − E

µB
.

The energy difference E′ − E is determined from a mea-
surement of the displacement of the beam in the inhomo-
geneous field.

It is well known that a minimal length of time, T ,
is required to measure the energy difference E′ − E; for
shorter times the beam would still overlap the reference
beam.

T >
�

E′ − E
.

The unstable state can only be observed during its life-
time; on the average we must involve the mean life time
τ . Therefore there is a limit to the accuracy ∆(E − E′)
with which the value of E′ − E can be determined:

∆(E′ − E) >
�

τ

∆m =
∆(E − E′)

µB
>

�

τµB
.

The accuracy ∆m becomes better if µB is increased. But
again, B cannot be made arbitrarily large. If µB were
made as large as the energy difference E − E0, the ex-
periment would lose its meaning as the state E would
no longer be distinguished from E0. Therefore, the uncer-
tainty ∆m with which the angular momentum component
can be measured has a lower limit

∆m >
�

τ(E − E0)
=

Γ

E − E0
, (5.3)

where Γ = �/τ is the width of the unstable state.

5.1.3 A short-lived state
cannot have a sharp orbital angular momentum

In a two body bound state the angle ϕ of rotational mo-
tion, and the angular momentum L of the state are two
variables that are conjugate to each other, and the un-
certainty principle requires that the two uncertainties ∆ϕ
and ∆L are related by ∆ϕ∆L > �. Whereas for a stable
state the uncertainty ∆ϕ is arbitrarily large, this is differ-
ent for a short-lived state because ϕ(t), being essentially
proportional to the time t, must be limited in the same
way as the lifetime is. A state with a finite mean life τ
has its lifetime distributed according to a probability dis-
tribution (1/τ) exp(−t/τ). The variance of the lifetime is
therefore equal to

(∆t)2 = [t2] − [t]2 = τ2 =
�

2

Γ 2 .

If we use αeff as the effective constant of proportional-
ity, so that

ϕ(t) ≈ αefft

then

∆ϕ ≈ αeffτ
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and ∆L is bounded from below at approximately

∆L ≈ �

αeffτ
.

The physical meaning of αeff is the angular velocity, which
in the classical problem is related to the angular momen-
tum and the kinetic energy by

L ≈ Mαeffr
2

Ekin ≈ α2
effr

2M/2

where r is the suitably averaged radius und M is the mass
of the two body problem. Therefore αeff is of the order of
Ekin/L, and the lower bound for ∆L can also be written
as

∆L ≈ �

τ

L

2Ekin

∆L

L
≈ Γ

2Ekin
(5.4)

5.2 Lorentz group embedding of the spin group

For relativistically compatible wave functions, spinning
massive particles have to be embedded into relativistic
particle fields with Lorentz group representations. The
mathematical method employed is the induction of
Lorentz group representations by spin group representa-
tions [3,4].

A finite dimensional Lorentz group SL( IC2) represen-
tation is decomposable into spin subgroup SU(2) repre-
sentations

SL( IC2) ∼=
⊕

SU(2) : D[L|R] ∼=
L+R⊕

S=|L−R|
DS

e.g. D[0|0] ∼= D0, D[J|0] ∼= DJ , D[ 12 | 1
2 ] ∼= D1⊕D0

D[1|1] ∼= D2⊕D1⊕D0

(5.5)

In contrast to the spin decompositions of Lorentz
group representations, the embedding of spin S particles
into a Lorentz transformation compatible field is not
unique since a given spin S-representation can be found
in many Lorentz group representations. Mathematically
speaking, the induced Lorentz group representation is
highly reducible [3,4]. In order to make the embedding
unique one may use the additional rule, applied to sta-
ble particles, that the ‘left and right spin’ indices L and
R should be chosen as small as possible and as close as
possible to each other.

S = L+R and |L−R| =

{
0 for spin S = 0, 1, . . .
1
2 for spin S = 1

2 ,
3
2 , . . .

(5.6)

This prescription gives equal ‘left-right spin’ for the rela-
tivistic embedding of integer spin S and a ‘left-right spin’

difference 1
2 for the embedding of halfinteger spin

SU(2) ↪→ SL( IC2) ∼=
⊕

SU(2) :

DS ↪→




D[ S
2 | S

2 ] ∼=
S⊕

J=0

DJ

for S = 0, 1, . . .

D[
S+ 1

2
2 | S− 1

2
2 ]⊕D[

S− 1
2

2 | S+ 1
2

2 ] ∼= 2 ×
S⊕

J= 1
2

DJ

for S = 1
2 ,

3
2 . . .

(5.7)

Two examples for integer spin, e.g. for scalar and vec-
tor particles like stable π and ρ, are

D0 ↪→ D[0|0] ∼= D0, D1 ↪→ D[ 12 | 1
2 ] ∼= D1⊕D0 (5.8)

To make the embedding unique for halfinteger spin, the
selfconjugated sum of two conjugated Weyl representa-
tions (left and right) is used, as familiar from the Dirac
field for the spin 1

2 electron with the Dirac representation

D
1
2 ↪→ D[ 12 |0]⊕D[0| 1

2 ] ∼= 2 ×D
1
2 (5.9)

Such a doubling leads to finite dimensional unitary rep-
resentations of the Lorentz group - of course, indefinite
unitary, e.g. in SU(2, 2) for Dirac spinors.

The Lorentz transformation from a rest system for a
particle with mass m > 0 to a general system is effected
by the two Weyl representations s, ŝ of the boosts

s
( q
m

)
= e

−→β −→σ
2 , ŝ(

q

m
) = e− −→β −→σ

2

with −→
β =

−→q
|−→q |artanh

|−→q |
q0

s
( q
m

)
=

√
q0 +m

2m
[12 +

−→σ −→q
q0 +m

]

=
1√

2m(q0 +m)

(
q0 + m + q3 q1 − iq2

q1 + iq2 q0 + m − q3

)

ŝ
( q
m

)
=

√
q0 +m

2m
[12 −

−→σ −→q
q0 +m

]

=
1√

2m(q0 +m)

(
q0 + m − q3 −q1 + iq2

−q1 − iq2 q0 + m + q3

)

s
( q
m

)
rs= 12 = s(1, 0, 0, 0), ŝ(

q

m
)

rs= 12 = ŝ(1, 0, 0, 0) (5.10)

All transmutators from spin SU(2)-representations to
embedding finite dimensional Lorentz group SL( IC2)-
representations can be built via totally symmetrized prod-
ucts of those two fundamental spin-Lorentz transmutators
in the Weyl representations

D[L|R]( q
m ) =

2L∨
s( q

m ) ⊗
2R∨
ŝ( q

m ) (5.11)
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They are representations of the boosts as homogeneous
space

SL( IC2)/SU(2) ∼= SO0(1, 3)/SO(3) (5.12)

For vector representations D[ 12 | 1
2 ] – e.g. acting on the

energy-momentum space itself – the spin-Lorentz trans-
mutators are the vector representations of the boosts

D[ 12 | 1
2 ](

q

m
) = Λ(

q

m
)i
k

∼= 1
2

tr s(
q

m
)σis	(

q

m
)σ̌k = e

(
0 −→

β−→
β 0

)

=
1
m

(
q0

−→q
−→q ěabm + qaqb

q0+m

)

Λ(
q

m
) rs= Λ(1, 0, 0, 0) = 14, Λ(

q

m
)
(

1
0

)
=

1
m

(
q0
−→q

)
(5.13)

with the Weyl matrices σi = (12,−→σ ) = σ̌j . The four
columns of the matrix Λ( q

m )i
0,a(a, b = 1, 2, 3) are the com-

ponents of a general basis in energy-momentum space, for−→q = 0 a rest system. Therefore we have the SO0(1, 3)-
orthogonality and SO(3)-projector conditions

Λ( q
m )i

0,aηijΛ( q
m )j

0,b =
(

1 0
0 −δab

)
Λ( q

m )i
0 = qi

m , Λ( q
m )i

aěabΛ( q
m )j

b = −ηij + qiqj

m2

(5.14)

5.3 Relativistic wave functions
for spin 1 stable particles

As an example we calculate the wave function for a stable
massive spin-1 particle. According to our general method,
we will induce [5] the unitary Poincaré group SL( IC2)−→× R

4

representations by the spin-time SU(2)×R representation.
For this purpose we combine the boost representation (the
spin-Lorentz transmutators) of the foregoing subsection
with the embedded translations described above as δ(E2−
m2) ↪→ δ(q2 −m2).

For a spin-1 particle, SO(3)-vectors (SU(2) represen-
tation with spin S = 1) are embedded with a [12 | 12 ]-spin-
Lorentz transmutator

Zi(x) =
∫

d3q

(2π)3
Λ(

q

m
)i
a

e−iqxua(−→q ) + eiqxu	a(−→q )√
2q0

with q = (q0,−→q ), q0 =
√
m2 + −→q 2,

i = 0, 1, 2, 3, a = 1, 2, 3 (5.15)

The momentum −→q ∈ R
3-indexed creation and annihila-

tion operators are eigenvectors with respect to both space-
time translations and spin rotations.

The on-shell quantization commutators and anticom-
mutator Fock forms

(
[Zi, Zj ](x)

〈{Zi, Zj}〉F (x)

)
=
∫

d4q

(2π)3
(

ε(q0)
1

)

×
(

−ηij +
qiqj

m2

)
δ(q2 −m2)e−iqx (5.16)

are used in the Feynman propagator which displays the
embedded matrix 13 ∼= ěab of a triplet SO(3)-representa-
tion

〈{Zi,Zj}(x) − ε(x0)[Zi,Zj ](x)〉F

= i
π

∫
d4q

(2π)3
−ηij+ qiqj

m2

q2+io−m2 e−iqx

= i
π

∫
d4q

(2π)3Λ( q
m )i

a
ěab

q2+io−m2Λ( q
m )j

be
−iqx

(5.17)

The wave function for a stable spin 1 particle with
energy E - i.e. in any Lorentz system, is given by the
‘square root’ of the the Feynman propagator

Zi
a(t, r) = −

∫
d4q

2π2Λ
( q
m

)i

a

1
q2 + io−m2 e−iqxδ(q0 − E)

= −Λ
(
i∂t

m
,
−i−→∂
m

)i

a

∫
d4q

2π2

1
q2 + io−m2 e−iqxδ(q0 − E)

= e−iEtΛ

(
E

m
,
−i−→∂
m

)i

a

kh+
0 (kr) (5.18)

The −→q -dependence in the transmutator gives rise to a
derivative with respect to the position of the L = 0 Hankel
wave. It can be written as a radial derivative multiplied
with the direction on the 2-sphere (spherical harmonics
Y1 ∼ −→x

r )

−→
∂ =

−→x
r
dr,

−→x
r

=

(
sin θ cos ϕ

sin θ sin ϕ

cos θ

)
,

1
r

(
x ± iy

z

)
=
(

sin θe±iϕ

cos θ

)
(5.19)

In general, the ‘traceless’ −→x
r -monomials of degree L in a

spherical basis give the spherical harmonics YL
m, e.g. for

L = 1, 2

Y1
•(θ, ϕ) ∼

−→x
r
,

Y2
•(θ, ϕ) ∼ [

−→x
r

∨
−→x
r

]0 ∼ xaxb − 1
3 ěabr2

r2(
Y1

±1

Y1
0

)
(θ, ϕ) =

√
3
4π

(
∓ 1√

2
sin θ e±iϕ

cos θ

)
,

(
Y2

±2

Y2
±1

Y2
0

)
(θ, ϕ) =

√
5
4π




√
3
8 sin2 θ e±2iϕ

∓
√

3
2 sin θ cos θ e±iϕ

3 cos2 θ−1
2


 (5.20)

The vector transmutator contains maximally two radial
derivatives

Λ

(
E

m
,
−i−→∂
m

)
=

1
m

(
E −i

−→
∂

−i
−→
∂ δabm − ∂a∂b

E+m

)

=
1
m

(
E − −→x

r idr

− −→x
r idr δabm − xaxb

r2(E+m)
d2

r

)
(5.21)
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When applied to the Hankel functions h+
0 (kr), higher or-

der Hankel functions [6] are produced up to angular mo-
mentum l = 2:

drh
+
0 (kr) = −kh+

1 (kr), d2
rh

+
0 (kr)

= k2 2h+
2 (kr) − h+

0 (kr)
3

(5.22)

here we have used the derivative properties of spherical
Bessel and Hankel functions (all called fl(ρ))

fl(ρ) = ρl

(
−1
ρ

d

dρ

)l

f0(ρ)

= −ρl−1 d

dρ

fl−1(ρ)
ρl−1 (5.23)

(2l + 1)fl(ρ) = ρ[fl+1(ρ) + fl−1(ρ)]

The intrinsic spin 1 of the particle combines with the l = 1
angular momentum −→x

r resulting in total spin j = 0, 1, 2.
Therewith, the three energy picked relativistically

compatible wave functions Zi
a=1,2,3 for a stable spin 1 mas-

sive particle are given by the three 4-vectors which are on
the right hand side in the (4 × 4)-matrix

Λ

(
E

m
,− i

−→
∂

m

)
kh+

0 (kr) = (5.24)

(
E
m

kh
+
0 (kr)

−→x
r

i k
m

kh
+
1 (kr)

−→x
r

i k
m

kh
+
1 (kr) δabkh

+
0 (kr)− xaxb

r2
k2

m(E+m) k
2h

+
2 (kr)−h

+
0 (kr)

3

)
,

multiplied with e−iEt. The a = 1 component is explicitly

Zi=0,1,2,3
1 (t, r) = (5.25)

e−iEt




x
r i k

m kh+
1 (kr)

kh+
0 (kr) − x2

r2
k2

m(E+m) k
2h

+
2 (kr)−h

+
0 (kr)

3

− xy

r2
k2

m(E+m) k
2h

+
2 (kr)−h

+
0 (kr)

3

− xz
r2

k2
m(E+m) k

2h
+
2 (kr)−h

+
0 (kr)

3




with k =
√
E2 −m2. In a spherical basis the xa

r -depen-
dence can be expressed with the spherical harmonics
above. When going to the rest system, the a = 1 com-
ponent becomes

Zi=0,1,2,3
1 (t, r) rs= e−imt


 0

1
0
0


1
r

+ · · · (5.26)

The dots behind the last expression stand for the terms
of higher order in 1/r. They vanish as r � 1/m. For the
spin components in the rest system we are interested in
the factor in front of the 1/r term which is the one that
survives at large r.

5.4 Unstable particles – spin neighbors

The spin definition of an unstable particle must take into
account the additional spacelike spread vector.

As was discussed above for stable particles, the mini-
mal embedding Lorentz group representation for a given
SU(2)-spin S includes all spins up to S – i.e. {0, . . . , S}
for integer S and { 1

2 , . . . S} for halfinteger S. To take into
account the possible S+1-structure for unstable particles
we choose for a minimal embedding a Lorentz group rep-
resentation with the ‘left and right spin’ L and R indices
increased, but as ‘close as possible’ to each other, so that
we leave room for a spin spread ∆S = 1. In comparison
with the stable particle case, S has to be replaced every-
where by S + 1

SU(2) ↪→ SL( IC2) ∼=
⊕

SU(2) :

DS ⊗D1 ↪→




D[ S+1
2 | S+1

2 ] ∼=
S+1⊕
J=0

DJ ,

S = 0, 1, . . .

D[
S+ 3

2
2 | S+ 1

2
2 ]⊕D[

S+ 1
2

2 | S+ 3
2

2 ] ∼= 2 ×
S+1⊕
J= 1

2

DJ ,

S = 1
2 ,

3
2 . . .

(5.27)

with the examples

S = 0 : D[ 12 | 1
2 ] ∼= D1⊕D0, S = 1 : D[1|1] ∼= D2⊕D1⊕D0

S = 1
2 : D[1| 1

2 ]⊕D[ 12 |1] ∼= 2 × [D
3
2 ⊕D 1

2 ]
(5.28)

5.4.1 Unstable particles with central spin 0

As mentioned above, the embedding of a spin representa-
tion into an induced Lorentz group representation is not
unique. A stable spinless particle can be embedded into a
D[0|0] field A as well as into its 1st derivative ∂jA acted
upon with a D[ 12 | 1

2 ] Lorentz group representation

∂jA(x) = −i
∫

d3q

q0(2π)3
Λ(

q

m
)j
0
e−iqxu(−→q ) − eiqxu	(−→q )√

2
,

Λ(
q

m
)j
0 =

qj

m

with q = (q0,−→q ), q0 =
√
m2 + −→q 2 (5.29)

It involves for the boost transformation the spin-Lorentz
transmutator Λ( q

m )j
k. The picked wave function for a sta-

ble spin 0 particle is

Aj(t, r) = −
∫

d4q

2π2Λ
( q
m

)j

0

1
q2 + io−m2 e−iqxδ(q0 − E)

= e−iEtΛ

(
E

m
,−i

−→
∂

m

)j

0

eikr

r

= e−iEt

(
E
m

−−→x
r

i
mdr

)
kh+

0 (kr)

= e−iEt

(
E
mkh

+
0 (kr)

−→x
r i k

m kh+
1 (kr)

)
(5.30)
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In the rest system this is

Aj(t, r) rs= e−imt


 1

0
0
0


1
r

+ · · · (5.31)

(For the neglected terms, refer to the remarks following
(5.26).) There is no new information compared with the
wave function considered above that had only one scalar
component A(t, r) = e−iEt kh+

0 (kr). The wave function is
just distributed to a Lorentz vector.

Things change if this method is applied to an unstable
particle. Here the energy-momentum spread vector pro-
duces a contribution in the new components, thus exhibit-
ing the spin spread for unstable particles.

As the simplest example, the wave function for a spin-
less unstable particle will be calculated.

Aj
Γ (t, r) = − ∫ d4q

(2π)2Λ( q
m )j

0
1

q2−m(m−iΓ )

×e−iqxδ
(
C(q0 − E) − S(q3 − k)

)

=

(
i∂t

m

−−→x
r

i
mdr

)
e−i(E−iη∆E)t 1

r ei(k−iη∆k)r

= e−i(E−iη∆E)t

×
(

E−iη∆E
m kh+

0 (kr)
−→x
r i[

k
m kh+

1 (kr) − η∆k
m kh+

0 (kr)]

)
eη∆kr

(5.32)

Genuine spin 1 contributions are proportional to the mo-
mentum spread as seen clearly in a central rest system
(E, k) crs= (m, 0)

Aj
Γ (t, r) crs= e−i(m−iη Γ

2 )t

(
1 − iηΓ

2m

−−→x
r iη

√
B2

m2 + Γ 2

4m2

)

×1
r
e−η

√
B2+ Γ2

4 r + · · · (5.33)

The terms of order 1/r2 neglected in (5.33) correspond to
the ones in (5.26) and (5.31). For the unstable state we
cannot just go with r to infinity but have to stay in the
region where it has not yet decayed, say, r � 1/∆k. This
requirement and the one that r � 1/m can be simultane-
ously satisfied if Γ/m � 1. Under these conditions, and in
leading order of Γ/m, the wave function for an unstable
spin zero particle can be expressed with the momentum
spread ∆k∗ in the central rest frame (4.12) as

Aj
Γ (t, r) crs=

(
1

−−→x
r

i∆k∗
m

)
e−i(m−iΓ/2)t e

−|∆k∗|r

r
(5.34)

The spin-1 neighbors (lower three components) are seen
to arise proportionally to the momentum spread ∆k∗ in

the central rest frame of the particle. They are an imme-
diate consequence of the short lifetime. The sum of the
magnitudes squared of the new components is the relative
intensity of spin-1 mixed into the original spin-0 state, it
is equal to (

∆k∗

m

)2

.

As mentioned in the introduction to this Sect. 5 the ap-
pearance of the spin neighbor produces a spin spread, not
unlike the spreads in energy and momentum, which, how-
ever, have a continuous appearance, corresponding to the
non-compact structure of the underlying group of space-
time translations. In order to make a comparison between
the continuous and the discrete spreads we define a mea-
sure of the spin spread ∆S as the root-mean-square vari-
ation of the spin of the short- lived state. To first order in
Γ/m we find for the example at hand:

∆S =
|∆k∗|
m

≥ Γ

2m
(5.35)

Under these circumstances, different spin states no
longer have to be orthogonal to each other. If one of them
is short-lived and therefore has spin neighbors, we desig-
nate it |j,m, Γ 〉 and write

〈j1,m1|j2,m2, Γ 〉 �= 0 even if j1 �= j2 or m1 �= m2,
(5.36)

provided they have some overlap in the enlarged spin space
that contains the spin spread of the short-lived particle.

6 Conclusions and outlook

In this paper we have shown how the two fourvectors
of energy-momentum average and spread govern the be-
haviour of relativistic resonances.

Also we have used Wigner’s method of Poincaré group
representations that are induced by representations of the
space-time translation and rotation groups, to explain the
occurrence of neighbouring spins as an immediate conse-
quence of a short lifetime of relativistic states.

Whereas it is clear that short lived states do not have
to be orthogonal to each other and to the stable particles
with the same charge-like quantum numbers – and the ap-
pearing spin spread makes this possible even for different
spins – it is less clear at the moment how to interpret this
situation in theoretical and in quantitative terms.

For the quantum probability interpretation of exper-
iments one uses absolute squares of ‘probability ampli-
tudes’ (transition elements), i.e. one relies on the scalar
product in the Hilbert space for the states. This positive
definite scalar product is a consequence of the U(1)-group
in which the time development of the states is represented,
t �−→ e−iEt ∈ U(1). What happens for unstable states
with a noncompact time development e−i(E−i Γ

2 )t /∈ U(1)
for Γ > 0? Is there no Hilbert space? How do we have to
interpret experiments with unstable particles?
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A stable and an unstable particle with a non-zero
scalar product between them will show quantum mechan-
ical interference so that their cross-section contains the
amplitude not only as the magnitude squared but also
linearly. The interference term produces decay products.
This seems to be the case in quasidiffractive scattering5.
For a correct description of the situation, all states that
have a non-zero scalar product between them are partially
identical and must be included in the counting. ‘Probabil-
ity collectives’6 have to be formed.
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